Discrete Scale Spaces via Heat Equation

نویسندگان

  • Anderson Cunha
  • Ralph Teixeira
  • Luiz Velho
چکیده

Scale spaces allow us to organize, compare and analyse differently sized structures of an object. The linear scale space of a monochromatic image is the solution of the heat equation using that image as an initial condition. Alternatively, this linear scale space can also be obtained applying Gaussian filters of increasing variances to the original image. In this work, we compare (by looking at theoretical properties, running time and output differences) five ways of discretizing this Gaussian scale-space: sampling Gaussian distributions; recursively calculating Gaussian approximations; using Splines; approximating by first-order generators; and finally, by a new method we call “Crossed Convolutions”. In particular, we explicitly present a correct way of initializing the recursive method to approximate Gaussian convolutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Long Time Integration of the Heat Equation

We construct space-time Petrov–Galerkin discretizations of the heat equation on an unbounded temporal interval, either right-unbounded or left-unbounded. The discrete trial and test spaces are defined using Laguerre polynomials in time and are shown to satisfy the discrete inf-sup condition. Numerical examples are provided.

متن کامل

Stability of an additive functional equation in the spaces of generalized functions

as the equation for the spaces of generalized functions. Making use of the fundamental solution of the heat equation we solve the general solutions and the stability problems of this equation in the spaces of tempered distributions and Fourier hyperfunctions. Moreover, using the regularizing functions, we extend these results to the space of distributions. 2000 MSC: 39B82; 46F05.

متن کامل

Stability of a Quadratic Functional Equation in the Spaces of Generalized Functions

Making use of the pullbacks, we reformulate the following quadratic functional equation: f x y z f x f y f z f x y f y z f z x in the spaces of generalized functions. Also, using the fundamental solution of the heat equation, we obtain the general solution and prove the Hyers-Ulam stability of this equation in the spaces of generalized functions such as tempered distributions and Fourier hyperf...

متن کامل

Non-regularity in Hölder and Sobolev spaces of solutions to the semilinear heat and Schrödinger equations

In this paper we study the Cauchy problem for the semilinear heat and Schrödinger equations, with the nonlinear term f(u) = λ|u|αu. We show that low regularity of f (i.e., α > 0 but small) limits the regularity of any possible solution for a certain class of smooth initial data. We employ two different methods, which yield two different types of results. On the one hand, we consider the semilin...

متن کامل

NUMERICAL SOLUTION OF ONE-DIMENSIONAL HEAT AND WAVE EQUATION BY NON-POLYNOMIAL QUINTIC SPLINE

This paper present a novel numerical algorithm for the linear one-dimensional heat and wave equation. In this method, a nite dierenceapproach had been used to discrete the time derivative while cubic spline isapplied as an interpolation function in the space dimension. We discuss theaccuracy of the method by expanding the equation based on Taylor series andminimize the error. The proposed metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001